Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene.

نویسندگان

  • Maryam Oskoui
  • Guido Davidzon
  • Juan Pascual
  • Ricardo Erazo
  • Juliana Gurgel-Giannetti
  • Sindu Krishna
  • Eduardo Bonilla
  • Darryl C De Vivo
  • Sara Shanske
  • Salvatore DiMauro
چکیده

BACKGROUND Mitochondrial DNA depletion syndrome is an autosomal recessive disorder characterized by decreased mitochondrial DNA copy numbers in affected tissues. It has been linked to 4 genes involved in deoxyribonucleotide triphosphate metabolism: thymidine kinase 2 (TK2), deoxyguanosine kinase (DGUOK), polymerase gamma (POLG), and SUCLA2, the gene encoding the beta-subunit of the adenosine diphosphate-forming succinyl coenzyme A synthetase ligase. OBJECTIVE To highlight the variability in the clinical spectrum of TK2-related mitochondrial DNA depletion syndrome. DESIGN Review of patients and the literature. SETTING Tertiary care university. PATIENTS Four patients with mitochondrial DNA depletion syndrome and mutations in the TK2 gene. MAIN OUTCOME MEASURES Definition of clinical variability. RESULTS Patient 1 had evidence of lower motoneuron disease and was initially diagnosed as having spinal muscular atrophy type 3. Patient 2, who is alive and ambulatory at age 9 years, presented at age 2 years with a slowly progressive mitochondrial myopathy. Patient 3 had a more severe myopathy, with onset in infancy and death at age 6 years of respiratory failure. Patient 4 had a rapidly progressive congenital myopathy with rigid spine syndrome and he died at age 19 months. CONCLUSION The clinical spectrum of TK2 mutations is not limited to severe infantile myopathy with motor regression and early death but includes spinal muscular atrophy type 3-like presentation, rigid spine syndrome, and subacute myopathy without motor regression and with longer survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative evaluation of the mitochondrial DNA depletion syndrome.

BACKGROUND The mitochondrial DNA (mtDNA) depletion syndromes (MDDSs) are autosomal recessive disorders characterized by a reduction in cellular mtDNA content. Mutations in at least 9 genes [POLG, polymerase (DNA directed), gamma; DGUOK, deoxyguanosine kinase; TK2, thymidine kinase, mitochondrial; TYMP, thymidine phosphorylase; MPV17, MpV17 mitochondrial inner membrane protein; SUCLA2, succinate...

متن کامل

Mitochondrial gene mutation screening in hearing loss patients, Hormozgan, Iran

Introduction: Hearing loss is the most frequent sensory disorder occurs in 1/1000 newborns. About 50% of hearing loss cases are due to genetic causes. Mutation in MTRNR1(A1555G), MTTL1(A3243G) and MTTS1(A7445G) are known to be one of the important cause of nonsyndromic Sensorineural hearing loos in some populations. This study aims to demonstrate the frequency of three mitochondrial mutatio...

متن کامل

Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B.

BACKGROUND Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a progressive neurodegenerative disorder associated with thymidine phosphorylase deficiency resulting in high levels of plasma thymidine and a characteristic clinical phenotype. OBJECTIVE To investigate the molecular basis of MNGIE in a patient with a normal plasma thymidine level. DESIGN Clinical, neurophysiological, ...

متن کامل

Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...

متن کامل

Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency

Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of neurology

دوره 63 8  شماره 

صفحات  -

تاریخ انتشار 2006